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Abstract
The world is filled with overly complex visualizations that obscure
key insights and overwhelm audiences. While prior work in visu-
alization has identified general best practices, it has not fully ex-
plored how specific design features contribute to perceptions of
visual complexity. To address this, we augmented the MASSVIS
dataset—one of the largest static visualization datasets—with new
metadata on design features (text, color, data, and layout) and per-
ceived complexity ratings. Analyzing feature distributions and their
effects, we trained machine learning models to predict perceived
complexity and identified feature importance. Our findings show
that the number of charts in a visualization most strongly influ-
ences perceived complexity, with more visual elements generally
leading to higher complexity. Additionally, we present case studies
demonstrating how the augmented dataset and models can support
research on human cognition and visualization design, enabling
designers to refine visualizations for optimal complexity. All supple-
mental materials are available at https://osf.io/k4uta/?view_only=
ab57e05d70324f0b9e26255c77646c9a

CCS Concepts
• Human-centered computing → Empirical studies in visualiza-
tion.
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1 Introduction
Well-designed visualizations enhance critical thinking by aligning
with our perceptual and cognitive strengths, aiding information com-
prehension and decision-making [10, 14]. Conversely, poor design
can obscure patterns and lead to miscommunication, with even well-
meaning designers falling prey to the curse of expertise, producing
overly complex visuals that overwhelm audiences [45].

To mitigate this, the visualization research community has devel-
oped best practices to improve the readability, interpretability, and
memorability of a visualization [3, 5, 6]. However, understanding
how combinations of design choices influence the visual complexity
of static visualizations remains a challenge. Visual complexity, often
defined as the "amount of detail or intricacy" in an image [36], can
render visualizations perplexing when excessive. Attempts to quan-
tify complexity, such as approximate entropy for line charts [29] or
edge counts in network graphs [40], have focused on specific chart
types rather than static visualizations broadly [1, 20].

So, what makes a visualization visually complex? Building on
existing work on visualization affordances [4, 12, 26], we examine
the relationship between perceived complexity and design features in
Text, Color, Data, and Design categories for 5,800 static visualiza-
tions. We extended the MASSVIS dataset [4, 5] with crowdsourced
visual complexity ratings and labels of key design features. This
enriched dataset enabled (1) statistical analyses and (2) the training
of regression models to quantify how design elements influence
perceived complexity. We find that visualizations with more ele-
ments are generally perceived as more complex. Feature importance
techniques [11] revealed the weighted impact of these elements.
We propose that future research can leverage these insights to help
designers optimize visual complexity for clarity and interoperability.

Contributions: We contribute insights on the relationship be-
tween visualization design features and perceived visual complexity
as well as a set of design feature labels and perceived visual complex-
ity ratings for the MASSVIS dataset. We use the augmented dataset
to train machine learning models that predict human perceptions of
visual complexity. We also offer two case studies, demonstrating
how (1) our models can help designers create visualizations with
consideration for visual complexity and (2) the augmented dataset
can be used in cognitive studies to shed light on how visualizations
can be designed to elicit trust and encourage critical thinking.

https://osf.io/k4uta/?view_only=ab57e05d70324f0b9e26255c77646c9a
https://osf.io/k4uta/?view_only=ab57e05d70324f0b9e26255c77646c9a
https://doi.org/10.1145/3706599.3719983
https://doi.org/10.1145/3706599.3719983
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Figure 1: The flow of our investigation spans four phases. We conduct Data Collection using the MASSVIS dataset, collecting ratings of
complexity and novel design feature labels for 5,800 visualizations. With the combined data, we then conduct Design & Complexity
Analysis, including 1) means comparison analysis of perceived complexity across design features and 2) training and evaluation
of simple machine learning models to derive design feature importance. We end up with Conclusions about what design features
contribute to visual complexity. Finally, we detail Applications for the augmented dataset and our trained models.

2 Related Work
Visual complexity has been defined variably across fields of study.
Perceptual psychology often describes it as "the amount of detail
or intricacy" in an image [36], while vision science uses measures
like feature congestion, subband entropy, and edge density to ap-
proximate visual complexity [28]. Algorithmic measures, such as
Kolmogorov complexity, evaluate complexity by the shortest pro-
gram needed to reproduce an image [8], while human-computer
interaction considers the number of visual elements in webpages
[27] or the complexity of icons based on structural features [7, 13].

These definitions, however, fall short for data visualizations,
which function more like paragraphs than static images, involving
multilayered interpretation [15, 32]. Visual saliency models trained
on natural images often fail to predict attention in visualizations
[22], highlighting the need for unique measures of visual complexity
specific to this medium. Some propose a human-centric approach,
emphasizing perceived complexity to capture subjective interpreta-
tions [21]. However, perceived complexity does not always align
with inherent complexity, and the roles of elements like text, color,
and chart type remain underexplored. Research on the complexity
of visualizations often references principles like Tufte’s data-ink
ratio and the avoidance of chartjunk for simplicity [38]. While some
support minimalism for cognitive efficiency [20], others argue that
decorative elements can enhance reflection and engagement [2, 16].
Recent visualization literature has called for the community to con-
sider both visual and non-visual complexity as ‘design material’
that is useful for informing effective data visualization design [43].
Still, no consensus exists on how design characteristics influence
perceived complexity [23, 33], and definitions remain inconsistent
across studies.

Machine learning offers promising tools to bridge these gaps.
Models have been applied to improve visualization layouts [41],
refine saliency predictions [22, 34], and generate descriptive text
for patterns [35]. By predicting feature importance, machine learn-
ing can help identify how design elements contribute to perceived
complexity, advancing our understanding of effective visualization
design.

3 MASSVIS Dataset Labeling
We generated a labeling scheme based on the original MASSVIS
taxonomy and related visualization literature, capturing design fea-
tures related to text (Text), color (Color), underlying data (Data),
and chart layout/design (Design). We crowdsourced labels for the
5,800 MASSVIS visualizations using our labeling scheme, recruit-
ing 160 participants (Mage = 38.19, SDage = 13.62) via Prolific [24].
We designed one survey per labeling category, where each survey
contained combinations of multiple-selection, multiple-choice, and
text-response survey questions. Labels collected were either categor-
ical (C), binary (0/1), or numeric (#). Since crowdsourcing can pro-
vide low-quality responses, we manually checked all crowdsourced
labels to ensure data quality.

Text Text Types (C): A visualization can be composed solely of
text, have no text, or include multiple types of text in the
form of axes label(s), axes text, title(s), short annotation(s),
captions(s), and legend-related text such as title or content
text.

Color Black and White (0/1): This label was coded as ‘yes’ if the
visualization was in black and white and ‘no’ if it was in color.
Number of Colors (#): This label captures crowdsourced par-
ticipants’ best approximations of the number of distinct colors
present in the visualization. Background Color (0/1): We mea-
sured background color, which was coded as ‘yes’ if the the
visualization had a non-white background color and ‘no’ if it
did not.

Data Number of Quantitative Variables (#): This label captures
approximations of the number of quantitative variables in
a visualization. Number of Categorical Variables (#): This
label captures approximations of the number of categorical
variables that underlie a given visualization.

Design Number of Charts (#): This label represents the amount of
charts in a visualization. Chart Types (C): This label captures
the presence of different chart types, which are the 12 visual-
ization types in the MASSVIS static visualization taxonomy.
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The types of charts are: Area, Bar, Circle, Diagram, Distribu-
tion, Grid & Matrix, Line, Map, Point, Table, Text, and Trees
& Networks. Number of Chart Types (#): This label is derived
directly from the Chart Types label and notes the number of
unique chart types included in a given visualization.

4 Experiment: Perceptions of Visual Complexity
We recruited 400 participants (MAge = 37.01, SDage = 12.84) from
Prolific to provide visual complexity ratings for the 5800 MASSVIS
visualizations. Participants were randomly assigned to one of 40
visualization group conditions, each containing a unique group of
145 random MASSVIS visualizations so that all 5800 visualizations
were viewed 10 times. They provided complexity ratings using a
slider task, resulting in 10 unique ratings for each visualization.

For binary labels, we ran comparisons of the visual complexity
ratings for visualizations with a given label versus those without,
such as comparing visualizations that are black and white to visu-
alizations that are not black and white. For numeric labels, such as
the number of colors, we conducted a Pearson’s correlation test to
determine the feature’s relationship with complexity ratings. We do
not claim that these analyses reveal causal relationships between the
presence of a given design feature and perceived complexity, but
rather use the comparisons to provide a summary overview of how
design and complexity ratings were distributed in the MASSVIS
space (2). We describe the results below:

Text Complexity ratings for visualizations with no text were not
significantly different from those with text (p = 0.075). Vi-
sualizations that contained captions (p < 0.001), titles (p <
0.001), or only text (p < 0.001) were rated as significantly
less complex as opposed to visualizations without those fea-
tures. In contrast, visualizations that contained annotations
(p < 0.001), axes labels (p < 0.001), axes text (p < 0.001),
legend titles (p < 0.001), or legend text (p < 0.001) had
significantly higher complexity scores than visualizations
without those features.

Color Black-and-white visualizations were rated as significantly
more complex than visualizations in color (p < 0.001). Vi-
sualizations with a non-white background (p < 0.001) were
rated significantly less complex than visualizations with a
white background. We found a weak, positive relationship
between the number of colors in a visualization and perceived
complexity (p < 0.001).

Data We found a weak, positive relationship between perceived
complexity and both the number of quantitative variables
(p < 0.001) and the number of categorical variables (p <
0.001).

Design Visualizations that contained Area (p = 0.012), Diagram
(p < 0.001), Distribution (p < 0.001), Grid & Matrix (p <
0.001), Line (p < 0.001), Point (p < 0.001), Table (p <
0.001), or Tree & Network charts (p < 0.001) were perceived
as significantly more complex than visualizations without.
Visualizations with Maps (p < 0.001) had significantly lower
complexity ratings as opposed to visualizations without maps.
Text (p = 0.386), Bar (p = 0.524), or Circle (p = 0.283) charts
did not significantly impact complexity ratings. However, we
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Figure 2: Distributions of and correlations with mean perceived
visual complexity ratings by Text, Color, Data, Design, and Mul-
tiplicity.

did find a moderate, positive relationship between the num-
ber of charts in a visualization and perceived complexity
(p < 0.001) as well as between the number of chart types and
perceived complexity (p < 0.001).

5 Model Training and Evaluation
We trained and evaluated a series of ML models to predict the per-
ceived visual complexity of a visualization using our design feature
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labeling scheme for the MASSVIS dataset. We derived the impor-
tance of the features from the best-performing models to attribute to
the design features.

5.1 Model Training
We first describe the ML models that we used in this work and then
provide information about how we prepared the design feature labels
to make them suitable for training these models and the training
details. We use interpretable machine learning models to easily
determine how each visualization feature affects predicted perceived
complexity. The three models used are Linear Regression, Support
Vector Regression (SVR), and Decision Tree Regression [42].

Linear Regression predicts outcomes as a linear combination of
input features, with weights referred to as coefficients. We also tested
two variants: Ridge Regression, which penalizes large coefficients to
reduce overfitting, and Lasso, which promotes sparsity in the coeffi-
cients. Support Vector Regression (SVR) applies Support Vector
Machines (SVMs) to regression tasks, leveraging support vectors
to predict new data points. SVR can utilize nonlinear kernels for
capturing complex relationships. We tested three SVR variants: lin-
earSVR (linear kernel), polySVR (polynomial kernel), and rbfSVR
(Radial Basis Function kernel), with rbfSVR identified as the best-
performing variant. Decision Trees use a tree structure to predict
target values based on simple decision rules. We employed a Deci-
sion Tree Regressor as perceived visual complexity is a continuous
variable (0–100). Decision trees are straightforward to interpret and
visualize.

Dataset Preparation: Categorical data were one-hot encoded into
binary columns for machine learning. We included the Multiplicity
feature (single- vs. multi-panel) from the MASSVIS dataset, as
it likely influences perceived complexity. Each visualization was
represented as a 30-dimensional vector comprising design, text,
color, data features, multiplicity, and mean perceived complexity
ratings.

Training Details: We split the dataset into training (80%) and
testing (20%) subsets, using the former for training and the latter for
evaluation. Continuous variables were log-transformed to address
skewness, with a constant of 1 added to values before transformation.
A grid search was conducted to optimize hyperparameters for each
model, with results shown in table 2. The rbfSVR model was iden-
tified as the highest-performing model and is the focus of detailed
reporting. Implementation was conducted using the Python library
scikit-learn [25].

5.2 Model Evaluation
Evaluation of Prediction Performance: We evaluate the model
performance on the test split using three commonly used metrics:
Mean Squared Error (MSE), calculated as the mean or average
of the squared differences between predicted and expected target
values in a dataset, Mean Absolute Error (MAE), calculated as
the average of the absolute error values, and R-squared score (R2),
calculated as 1 - the sum of the residuals squared divided by the total
sum of squares.

Table 2 presents the prediction performance of the ML models.
The best performing model was the rbfSVR model (R2 = 0.644,

Models Features Importance

Linear
# of Chart Types 21.35
Circle -10.22
Black and White 9.88
Bar -9.32
# of Charts 8.33

Lasso # of Chart Types 13.54
Black and White 9.53
# of Charts 8.34
Circle -7.95
Bar -7.04

Ridge # of Chart Types 19.67
Black and White 9.84
Circle -9.74
Bar -8.83
# of Charts 8.33

rbfSVR # of Charts 72.35
# of Colors 32.32
Diagram(s) 25.62
Caption(s) 24.49
# of Categorical Vars. 15.89

Decision
Tree

# of Charts 0.54

Caption(s) 0.20
# of Colors 0.07
Title(s) 0.07
Background Color 0.02

Table 1: Five most significant feature importance scores (origi-
nal and scaled) for each of our trained models. For all feature
importance scores, see supplemental materials.

Models Hyperparameters R2 MAE / MSE

Multiple Linear – 0.591 10.73 / 179.70
Lasso α = 0.0046 0.589 10.75 / 180.30
Ridge α = 1 0.590 10.73 / 179.79

rbfSVR C = 10, γ = scale, ε = 1 0.644 9.86 / 156.33

Decision Tree depth=6, split=85, leaf=11 0.525 11.19 / 208.38

Table 2: Overview of trained models and performance metrics
(R-squared, Mean Absolute Error, and Mean Squared Error).
MAE and MSE values are shown together for brevity.

MAE = 9.855, MSE = 156.331). These metrics reveal that our mod-
els only do a middling job at predicting complexity, as even the
highest R2 score of 0.644 is a rather low value. Future work could
leverage less interpretable machine learning models (such as deep
neural networks) to improve the prediction performance.
Analysis of Feature Importance: Using all of our fitted models,
we derived feature importance scores for each design feature to
reveal the extent to which the models rely on a given feature. We
used these scores to quantify how significant a design feature is to
actual notions of perceived visual complexity. For Linear Regression
models, we examine the coefficients assigned to each design feature,
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which can be either negative or positive in value, indicating whether
the feature contributes to increased or decreased predicted ratings
of complexity. The absolute value or magnitude of the coefficient
can be used to infer the importance of the features. For the Decision
Tree Regression model, we used scikit-learn’s built-in method to
collect feature importance, in which importance is calculated as
“the (normalized) total reduction of the criterion brought by that
feature” [25]. A higher score indicates higher importance for a given
feature. For SVR models, we used permutation feature importance, a
technique well-suited for nonlinear models. The technique observes
and reports the extent to which perturbations to each input feature
affect the output of the model.

Across all models, we found that the Number of Charts was
consistently represented as a feature with relatively high importance.
All Linear Regression models had the same top five labels (Number
of Chart Types, Black and White, Circle, and Bar) as important
features in addition to the number of charts, though the ordering
of features varied. These labels were strictly from the Design and
Color categories. For SVR and Decision Trees, however, captions
were of high importance, introducing Text. The Data category was
also found to be of high importance (5th) for the SVR model. See
Figure 1 for the feature importance scores.

6 What Makes a Visualization Complex?
Design features were categorized based on whether they increase or
decrease complexity ratings. In fig. 2, we visualize the mean com-
plexity ratings for visualizations with and without a given feature,
highlighting statistically significant differences. The most influential
feature, with a scaled importance score of 1.000, is the Number of
Charts, which has a moderate positive correlation with perceived
complexity. Other features, such as Number of Colors and Chart
Types, show weaker correlations but still contribute to complexity.

In general, more visual elements result in higher perceived com-
plexity, with 16 features associated with increased complexity and 8
with reduced complexity. Prior work suggests that reducing visual
elements, or "decluttering," enhances memorability and profession-
alism [1], and our findings align with this. However, reducing com-
plexity may also reduce critical thinking [16, 17]. Popular designs
like small multiples and composite dashboards often involve many
charts, increasing perceived complexity. As these designs are com-
monly used in decision-making tools, future research should explore
how higher complexity impacts trust and comprehension in data. In
the next section, we present a case study to explore these questions
further.

7 Applications for Model & Relabeled Dataset
We showcase potential applications of our models and our aug-
mented dataset for predicting complexity and understanding human
cognition.

7.1 Model Applications: Predicting Complexity
As a preliminary exploration, we implemented a simple function in
Python (using the rbfSVR model from section 5) that predicts the
perceived visual complexity of a visualization on a 0-100 scale based
on feature labels that can be passed as arguments to the function
(see the supplementary materials for details). We present a scenario

showcasing the everyday benefits of predictive complexity modeling
and its potential for future research.

Imagine a student, Akira, who has designed a visualization for
their Film & Media final project. The visualization is a bar chart
with many embellishments, as shown on the left of fig. 3 [37]. Akira
wants to know whether the design might be too complex, so they
extract features from the visualization and input them to our func-
tion as the following: multiplicity (single panel), text types (title,
annotation, axes labels, axes text, caption), black and white (0), back-
ground color (0), number of colors (4), chart types (Bar), the number
of quantitative (0) and categorical (1) variables, and the number
of charts (1). The function returns the predicted perceived visual
complexity score of 32.74.

This isn’t a bad score to Akira, but they would prefer it to be a
little lower since the visualization is part of a short, fast-paced pre-
sentation. Akira redesigns the visualization, removing annotations
and the images overlaid on the bars, which reduces the number of
colors. The right side of fig. 3 shows the final redesign [39], which
has a new set of design feature labels associated with it: multiplicity
(single panel), text types (title, axes labels, axes text, legend text,
caption), black and white (0), background color (0), number of col-
ors (1), number of quantitative variables (1), number of categorical
variables (1), number of charts (1), chart types (Bar). Akira runs
the new feature labels through our function, which returns the pre-
dicted perceived visual complexity score of 25.74. Satisfied with the
simpler design, Akira includes the redesign in their presentation.

Building on this example, we argue that there is a vast range of
future work in the space of modeling complexity. Future research
could enhance the function’s usability and generalizability by con-
textualizing complexity scores, clarifying for whom and for what
purpose they are generated and calibrated.

Figure 3: Bar charts for model applications with differing com-
plexity predictions. (Left: 32.74. Right: 25.74.)

7.2 Dataset Applications: Studying Cognition
This work’s labels and complexity ratings for the MASSVIS dataset
can enhance understanding of human cognition during visualization
experiences. Through a proof-of-concept case study, we explore how
visual complexity affects data comprehension, confidence, and trust.
We recruited 40 participants (Mage = 32.3, SDage = 13.36) via Prolific



CHI EA ’25, April 26-May 1, 2025, Yokohama, Japan Lin et al.

[24] to evaluate two MASSVIS visualizations: a high-complexity bar
chart (rating = 60.30, SD = 25.52) and a low-complexity pie chart
(rating = 27.65, SD = 27.48). Participants completed visual literacy
assessment test questions [19], rated confidence and trust using a
6-point Likert scale, and shared insights on chart comprehension.

We found higher visual complexity can hinder comprehension.
Participants performed worse on the more complex bar chart (VLAT
accuracy = 0.64, SD = 0.30) than on the simpler pie chart (accu-
racy = 0.79, SD = 0.22). We also found evidence of miscalibrated
confidence. Participants reported higher confidence interpreting
the complex bar chart (M = 3.7, SD = 1.30) compared to the pie
chart (M = 3.2, SD = 1.40), despite performing worse. This aligns
with findings that overconfidence often correlates with lower actual
ability [18, 31], underscoring the need for deeper exploration of
confidence calibration in visualizations. Participants showed slightly
lower trust in the more complex bar chart (M = 4.25, SD = 1.21)
than in the simpler pie chart (M = 4.45, SD = 0.89). This supports
theories linking clarity and trust [9, 30, 44], suggesting that reducing
complexity may enhance trustworthiness. Future work could identify
design features that foster trust in complex visualizations.

Figure 4: Pie and bar charts (modified to comply with copyright
restrictions) for dataset applications case study, showing con-
trasting perceived complexities. Left: pie chart (27.65). Right:
bar chart (60.30).

8 Conclusion
Generally, the more visual elements a visualization contains, the
greater its perceived complexity. Future work should closely ex-
amine potential trade-offs of adding more or less elements in a
visualization. For example, an appropriately complex visualization
with the right number of elements might force people to slow down
and think analytically about the presented data [16]. On the other
hand, popular visualization designs such as small multiples and
composite visualization dashboards often include a large number of
charts. Our results predict these visualizations as more perceptually
complex. Considering these visualizations are often used in visual
analytic tools to assist decision-making, future work can investigate
whether higher perceived complexity influences people’s trust and
comprehension in the data.
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